Kuartilbawah (Q 1) adalah nilai yang menjadi batas dari data terurut yang paling rendah sampai 1 / 4 bagian data terurut pertama. Kuartil tengah (Q 2) adalah nilai yang membagi banyak data menjadi dua bagian yang sama banyak. Nilai dari kuartil tengah (Q 2) disebut juga dengan median yaitu nilai yang terletak antara dua bagian dari data terurut.
Hai Quipperian, saat belajar Matematika pasti kamu sudah mengenal istilah median, kan? Median merupakan nilai tengah dari kumpulan data. Lalu, bagaimana jika kamu diminta untuk menentukan mediannya median? Hayo, ribet kan? Tenang, mediannya median itu biasa dikenal dengan istilah kuartil. Apakah kamu pernah mendengar istilah kuartil? Jika belum, kali ini Quipper Blog akan mengajakmu untuk belajar kuartil data tunggal dan berkelompok. Lalu, apa sebenarnya kuartil data tunggal dan berkelompok itu? Yuk, simak selengkapnya! Pengertian Kuartil Pengertian kuartil hampir sama dengan median. Hanya saja, pada kuartil pembagianya adalah empat. Kuartil adalah suatu nilai yang bisa membagi kumpulan data menjadi empat bagian sama besar. Syarat untuk mendapatkan kuartil ini adalah data harus diurutkan terlebih dahulu. Oleh karena membagi data menjadi empat bagian sama besar, maka setiap bagian memilki persentase 25%. Perhatikan ilustrasi berikut. Dari gambar di atas, muncul istilah Q1, Q2, Q3, kan? Memangnya apa arti istilah-istilah tersebut? Q1 disebut juga kuartil atas, yaitu kuartil yang membagi 25% urutan data terkecil, Q2 disebut juga kuartil tengah atau median, yaitu kuartil yang membagi 50% data sama besar, dan Q3 disebut juga kuartil bawah, yaitu kuartil yang membagi 25% urutan data terbesar. Lalu, apa yang dimaksud kuartil data tunggal dan berkelompok? Pengertian Kuartil Data Tunggal Data tunggal adalah data yang disusun secara tunggal, tidak dalam bentuk interval. Kuartil data tunggal adalah suatu nilai yang membagi data-data tunggal menjadi empat bagian sama besar. Contoh data tunggal adalah 1, 1, 2, 2, 3, 3, 4, 4, dan seterusnya. Pengertian Kuartil Data Berkelompok Data berkelompok adalah kumpulan data yang ditulis dalam bentuk interval. Kuartil data berkelompok adalah suatu nilai yang membagi data-data interval menjadi empat bagian sama besar. Memangnya, apa sih tujuan dari ditentukannya kuartil? Misalnya pada kasus e-commerce, kuartil ini bisa dijadikan indikator untuk menentukan 25% penjual dengan rating tertinggi, 25% penjual dengan pendapatan terbesar, atau sebaliknya. Rumus Kuartil Rumus kuartil data tunggal berbeda dengan data berkelompok. Mengingat, penyajian kedua jenis data juga berbeda. Khusus untuk data berkelompok ada beberapa elemen yang harus kamu perhatikan. Agar kamu semakin paham, simak rumus berikut. Rumus Kuartil Data Tunggal Sebelum menentukan kuartil data tunggal, kamu harus tahu dulu letak kuartil yang kamu cari. Adapun letak kuartil suatu data tunggal bisa kamu cari dengan rumus di bawah ini, ya. Dengan Qi = kuartil ke-i; i = 1, 2, 3 bergantung letak kuartil yang dicari; dan n = banyaknya data. Letak kuartil menandakan urutan data tempat kuartil itu sendiri. Artinya, setelah tahu letaknya, kamu bisa menentukan kuartilnya sesuai urutan yang diperoleh. Misalnya, letak kuartil ke-1 adalah 4, maka data yang berada di urutan 4 itulah yang dinamakan kuartil ke-1. Perhatikan contoh, ya. Berapakah kuartil ke-3 dari kumpulan data-data berikut. 2, 2, 2, 1, 1, 1, 5, 5, 3, 3, 4, 4, 9, 9, 2, 1, 2, 3, 8 Pembahasan Pertama, urutkan dahulu datanya. 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 5, 5, 8, 9, 9 β†’ banyaknya data n = 19 Selanjutnya, tentukan letak kuartil ke-3 dengan rumus berikut. Dari perhitungan di atas, diperoleh bahwa kuartil ke-3 terletak di data urutan ke-15, yaitu 5. Jadi, kuartil ke-3nya adalah 5. Rumus Kuartil Data Berkelompok Rumus kuartil data berkelompok tentu tidak sesederhana data tunggal. Ada beberapa elemen yang harus kamu tentukan sebelumnya, seperti letak kuartil yang dicari, frekuensi kumulatif data, tepi bawah kuartil yang dicari, dan interval kelas. Adapun langkah menentukan kuartil data berkelompok adalah sebagai berikut. Mula-mula, tentukan dahulu letak kuartilnya Dengan Qi = kuartil ke-i i = letak kuartil ke-i; dan n = banyaknya data. Setelah tahu letak kuartilnya, tentukan kuartil yang dimaksud dengan rumus berikut. Dengan Qi = kuartil ke-i; Tbi = tepi bawah kelas kuartil ke-i; p = interval kelas; fk = frekuensi kumulatif sebelum kuartil ke-i; f = frekuensi kuartil ke-i; n = banyaknya data; dan i = posisi kuartil yang dicari 1 – 3. Untuk lebih lengkapnya, perhatikan contoh berikut ini. Diketahui tabel berat badan siswa SD Kelas 1 – 6 SD Mulia Jaya. Berat BadanFrekuensi f 25 – 283029 – 322233 – 364537 – 4016Jumlah113 Tentukan kuartil ke-1 dari data di atas! Pembahasan Mula-mula, tentukan dahulu frekuensi kumulatif pada tabel. Berat badanFrekuensi f Frekuensi kumulatif fk25 – 28303029 – 32225233 – 36459737 – 4016113Jumlah113 Selanjutnya, tentukan letak kuartil ke-1. Oleh karena letak kuartilnya pertamanya 28,25, maka kuartil tersebut berada di rentang berat badan 25 – 28. Lalu, tentukan tepi bawah kuartil ke-1 dan panjang data interval. Tb1 = 25 – 0,5 = 24,5 p = panjang data = 4. Terakhir, substitusikan nilai elemen-elemen yang diketahui pada persamaan berikut. Jadi, kuartil ke-1 dari data berat badan tersebut adalah 28,26. Contoh Soal Untuk mengasah pemahamanmu tentang kuartil data tunggal dan berkelompok, yuk simak contoh soal berikut ini. Contoh Soal 1 Diketahui data-data berikut. 7, 3, 2, 4, 5, 2, 5, 4, 1, 3, 8, 7, 4, 7, 9 Tentukan perbandingan kuartil ke-1 dan kuartil ke-3 dari data di atas! Pembahasan Mula-mula, urutkan dahulu datanya seperti berikut. 1, 2, 2, 3, 3, 4, 4, 4, 5, 5, 7, 7, 7, 8, 9 β†’ n = 15 Selanjutnya, tentukan letak kuartil ke-1. Kuartil ke-1 berada di urutan data nomor 4, yaitu 3. Selanjutnya, tentukan letak kuartil ke-3. Kuartil ke-3 terletak di urutan data nomor 12, yaitu 7. Jadi, perbandingan kuartil ke-1 dan kuartil ke-3 adalah 3 7. Contoh Soal 2 Bu Abel membagikan daftar perolehan nilai Matematika SMP Nusa Bangsa Kelas VIIA seperti berikut. Nilai MatematikaBanyak siswa65107257988212 Siswa dinyatakan lulus jika memiliki nilai lebih besar atau sama dengan median. Berapakah banyaknya siswa yang tidak lulus? Pembahasan Diketahui n = banyaknya data = 35 Untuk menentukan jumlah siswa yang tidak lulus, kamu harus mencari dulu nilai mediannya Q2. Meskipun disajikan dalam bentuk tabel, tapi data di atas termasuk data tunggal, ya. Hal itu karena penulisan nilainya tidak dijadikan interval. Adapun median data di atas adalah sebagai berikut. Kuartil kedua atau median berada di urutan data nomor 18, yaitu 79. Artinya, siswa dikatakan lulus jika nilai minimalnya 79. Dengan demikian, banyaknya siswa yang tidak lulus adalah 15. Jadi, jumlah siswa yang tidak lulus adalah 15. Contoh Soal 3 Dalam rangka memperingati Hari Pendidikan Nasional, Dinas Pendidikan Kota Y mengadakan Seminar Pendidikan pada 60 orang dengan rentang usia yang berbeda-beda seperti berikut. Rentang usia thJumlah peserta16 – 20421 – 251026 – 30631 – 351536 – 40841 – 451446 – 503 Tentukan kuartil ke-3 dari data di atas! Pembahasan Mula-mula, tentukan dahulu frekuensi kumulatif pada tabel. Rentang usia thJumlah pesertaFrekuensi kumulatif fk16 – 204421 – 25101426 – 3062031 – 35153536 – 4084341 – 45145746 – 50360 Banyaknya data n = 60. Selanjutnya, tentukan letak kuartil ke-3. Oleh karena letak kuartilnya pertamanya 45, maka kuartil tersebut berada di rentang usia 41 – 45. Lalu, tentukan tepi bawah kuartil ke-3 dan panjang data interval. Tb3 = 41 – 0,5 = 40,5 p = panjang data = 5 Terakhir, substitusikan nilai elemen-elemen yang diketahui pada persamaan berikut. Jadi, kuartil ke-3 dari data berat badan tersebut adalah 41,21. Itulah pembahasan Quipper Blog kali ini. Semoga bermanfaat, ya. Untuk mendapatkan materi lengkapnya, yuk buruan gabung Quipper Video. Salam Quipper!

Sementaraitu, kuartil bawah dan atas biasanya akan memberikan informasi tentang seberapa besar penyebarannya dan jika kumpulan data miring ke salah satu sisi. Kuartil tersebut akan membagi jumlah titik data secara merata yang kisarannya tidak sama di antara kuartil (yaitu, Q3-Q2 β‰  Q2-Q1).

Jawabansemoga bermanfaat y temankuartil bawah Q1 = 42,5kuartil atas Q3 = 75,25
ο»ΏKuartilpada suatu data dapat didapatkan dengan cara membagi data tersebut secara terurut kedalam empat bagian yang memiliki nilai sama besar. Kuartil itu sendiri terdiri atas tiga macam, yaitu diantaranya: Kuartil bawah ( Q1) Kuartil tengah / median ( Q2) Kuartil atas ( Q3)
- Kuartil adalah data atau nilai yang membagi data yang telah diurutkan menjadi empat bagian yang sama. Dilansir dari buku Cara Mudah UN 09 Mat SMA/MA 2009 oleh Tim Literatur Media Sukses, kuartil terdiri atas 3 bagian Kuartil bawah Q1 Kuartil tengah atau median Q2 Kuartil atas Q3 kuartil Baca juga Cara Menentukan Kuartil Pada Ukuran Penyebaran Data Desil Desil adalah data atau nilai yang membagi data yang telah diurutkan menjadi sepuluh bagian yang sama. Secara umum letak desil ke-i adalah dengan i = 1,2,...,9 Baca juga Rumus Jangkauan, Kuartil, Simpangan Rata-rata, Variansi, dan Deviasi Standar pada Ukuran Penyebaran Data Berkelompok Contoh soal 1 Data gol yang dicetak tim A adalah sebagai berikut 1,2,0,0,3,2,1,1,2 Kuartil bawah dan kuartil atas dari data tersebut adalah .... A. Β½ dan 1B. Β½ dan 2C. 0 dan 2D. 1 dan 2E. 0 dan 3
Kuartilbawah atau Q1 merupakan salah satu materi yang dibahas dalam ilmu Matematika. Biasanya, kuartil bawah dihitung bersamaan dengan unsur kuartil lain, yakni kuartil tengah (Q2) dan kuartil atas (Q3). ADVERTISEMENT Kuartil sendiri adalah jenis kuantil yang membagi data menjadi empat bagian dengan jumlah yang kurang lebih sama.
Letakletak kuartil pada data tersebut dapat dilihat pada gambar di bawah ini. Penentuan kuartil menurut kondisi banyaknya data adalah sebagai berikut. Kuartil untuk banyaknya data \((n)\) ganjil dan \(n+1\) habis dibagi 4. Dari penghitungan di atas, kuartil 1 adalah dat ke-19, kuartil 2 adalah data ke-38 dan kuartil 3 adalah data ke 57. Kuartilatas/akhir atau disebut juga kuartil ketiga, adalah 25% bilangan teratas dari sekumpulan data, atau bagian ke-75 dari perseratus. Kuartil atas dihitung dengan menentukan median (nilai tengah) dalam setengah bagian atas dari sekumpulan data. [2] Nilai tersebut dapat diperoleh dengan menghitung menggunakan bolpoin dan kertas. M1VD8mu.
  • l844o6ummt.pages.dev/381
  • l844o6ummt.pages.dev/272
  • l844o6ummt.pages.dev/209
  • l844o6ummt.pages.dev/524
  • l844o6ummt.pages.dev/66
  • l844o6ummt.pages.dev/98
  • l844o6ummt.pages.dev/180
  • l844o6ummt.pages.dev/488
  • kuartil bawah dan kuartil atas